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The present paper refers to the well known fact that the glass transition-composition curves of miscible 
binary systems (e.g. polymer--diluent and polymer-polymer mixtures) often exhibit a singular point when 
the Tg values of the two components are far apart. Two different equations apparently apply above and 
below the temperature of this singularity. Starting from Couchman's entropic treatment of the glass 
transition of mixtures, and from Angell's suggestion for the calculation of To ('ideal glass transition 
temperature' of the component with higher Tg), it is shown that below To an equation should be applicable 
to binary mixtures which differs considerably from the equations normally used in the literature. The new 
equation gives a satisfactory description of selected experimental data in the proximity of the component 
with lower T s. 
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INTRODUCTION 

For several polymer-diluent and polymer-polymer 
binary systems, the experimental 'Tccomposition curve', 
obtained by calorimetric measurements, appears to be 
composed of two different lines that meet at a character- 
istic temperature T~us p (refs. 1-14). The cusp is observed 
in practice only when the difference between the T~ values 
of the two components is higher than about 70°C 12. 
Unfortunately, the cusp is often found in an intermediate 
composition range in which the glass transition is rela- 
tively broad, and sometimes doubled. The broadening of 
the transition at intermediate compositions, observed 
in compatible polymeric blends, is a quite general 
phenomenon, which has been explained as an effect of the 
microheterogeneity of the sample, where local composi- 
tion fluctuations are in excess of normal density and 
temperature fluctuations 15. The situation is more com- 
plex when intermediate compositions of polymer-diluent 
systems are considered: from dynamic mechanical studies 
of mixtures it can sometimes be found that single 
calorimetric transitions are composed of two overlapping 
transitions 16, and in a few cases two different transitions 
are also observed calorimetrically 17-19. Nevertheless, 
there is experimental evidence that in the proximity of 
the diluent (or near the polymer whose Tg is lower), a 
composition range exists within which the system is 
homogeneous and the experimental data cannot be 
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described by the equations found to be applicable above 
T~usp, that is on the side of the component with higher T v 

A prediction of the presence of the cusp, in the 
framework of the free-volume theory of the glass 
transition, was proposed long ago by Kovacs 1-3, and the 
relative equations were applied successively to some 
systems 4,llA2A*. The treatment is based on the hypo- 
thesis that the fractional free volume of the mixture ( f )  
is given by the weighted sum of the fractional free volume 
of pure components,f~, plus, if necessary, an interaction 
term, i.e.: 

f = q~ l f l  + ~b2f2 - VffV (1) 

with 

f l  = f g l - t - A a l ( T - -  Tgl) (2a) 

f2 = fg2 + Ac~2(T- Tg2) (2b) 

where the q~i are the volume fractions, thefg i are fractional 
free volumes of pure components at the respective glass 
transition temperature Tgi, the Aa i are the thermal 
coefficients of expansion of fg~, quite close to the 
differences between the volume expansion coefficients in 
the glassy and liquid state, V is the specific volume of 
the mixture and V e is the excess volume. (The component 
with higher glass transition is denoted with the number 2, 
the second component with the number 1.) Another 
important assumption is that at the glass transition 
temperature of the mixture the fractional free volume is 
given by: 



Peculiarities of glass transition of binary systems: M. C. Righetti et al. 

so that one obtains: 

Tg• 

or, if V~=0: 

V,= 

t~lA~ 1 + t~2A0t 2 

(ii~ 1A~ 1Zg I --t- (~12A~ 2 Tg 2 
t~lAct 1 d- t~2A0~ 2 

(4a) 

(4b) 

When T 8 is lower than Tcr -~- Zg 2 - fg2 /A~2 ,  the critical 
temperature at which the fractional free volume of 
component 2 becomes zero, according to equation (2b), 
different equations are obtained: 

\¢1) A~<, \ ¢~ ) 
or, if V~=0: 

which differ considerably from equations (4a) and (4b). 
One characteristic feature of the above theoretical 

treatment is that the free-volume parameters fg~ and A~ 
are somewhat arbitrary, i.e. they have to be treated as 
adjustable parameters. In this respect it has to be noted 
that the difference (Tg 2 -  Ter)=fg2/A~2 has been found 
to be ca. 150°C for polystyrene 1-3 and ca. 60°C for 
poly(vinyl chloride) 4. 

In the present paper it is shown that an appropriate 
extension of Couchman's treatment is required to 
describe the Tg-composition curve in the proximity of 
the component with lower Tg. 

THEORETICAL TREATMENT 

In our previous work 2°, the theoretical treatment 
proposed by Couchman 21-28 to describe the composi- 
tional dependence of T~ for binary systems has been 
applied to selected mixtures, for which heat capacity data 
were available in the literature. According to Couchman's 
treatment, the analytical form of the equation obtained 
depends directly upon the function chosen to represent 
the temperature dependence of the specific heat incre- 
ments Acpi _ I a (Acpl-Cpi-Cpi). It was found that the most 
correct equation for the dependence of Acpi on the 
temperature gives the least satisfactory description of the 
experimental Tg data, a result that could be accounted 
for by the assumption that the entropy of mixing contains 
interaction terms, being not only configurational (or 
combinatorial), and so continuous at the glass transition 
temperature of the mixtures. In order to obtain the most 
correct equation for the dependence of mCpi o n  the 
temperature, one has to extrapolate the liquid heat 
capacity of the component with higher glass transition 
from Tg 2 down to Tgl. In our first approach to the 
problem, we have not considered a thermodynamic limit 
for the liquid state. However, such a limit always exists, 
so that, if this characteristic temperature, denoted here 
T o, is greater than T~I, then the extrapolation ofc~p cannot 
be carried out down to Tgl. The method of calculation 
of To, based on Kauzmann's observation 29, has been 
discussed by Angell and coworkers3°.31: at the equi- 
librium melting point, the difference between the entropy 
of the liquid and that of the crystal is the entropy of 
fusion, per unit weight, Asf, and therefore, when a 

supercooling process takes place down to a given low 
temperature, the liquid cannot lose more entropy than 
that lost along the thermodynamically favoured path, i.e. 
the entropy of fusion (Asf) plus the vibrational entropy of 
the crystal (Asvib) plus the entropies of possible solid- 
state transitions (Astr). The heat capacity of the super- 
cooled liquid must decrease to a value very close to that 
of the crystal at a defined temperature, indicated as T o, 
so that no more entropy than that indicated above can be 
lost during the process of supercooling. Such a tempera- 
ture To, at which the excess entropy (sex = S l i q u i d -  Scrystal) 
would become zero, defined frequently as the 'ideal glass 
transition temperature', has to satisfy the following 
condition30,31 : 

fr 'f[c~(T)-cp(T)] T=Asf + AStr (6) d ln  
o 

whose meaning is that the area between the liquid and 
the crystal Cp curves must be equal to (Asf+Astr). 
Obviously the value of T O can be estimated only by an 
extrapolation of the experimental c~ data, obtained above 
Tg, and this process is open to some degree of arbitrariness 
when the difference (Tg-To) is large, since there are no 
sound theoretical bases for such an extrapolation. As far 
as this problem is concerned, the most gradual possible 
decrease of (c~-c~) below Tg is suggested by Angel132, 
so that the entropy of the supercooled liquid remains 
greater than the entropy of the crystal as far as possible; 
as a consequence, a sharp decrease of c~ in the proximity 
of T O is assumed to take place a2. As an example, it is 
useful to consider polyoxytrimethylene (PO3M), a 
polymer for which extensive amorphous and crystalline 
heat capacity and entropy data are available 33, and 
whose Asf and Tv are respectively 0.528 J g-  1K- 1 and 
308 K 34. When Angell's procedure is followed, as shown 
in Figure 1, the calculated value of T O for the above 
polymer is 162 K. As shown in Figure 2, the above value 
of T O can also be obtained by extrapolation of the liquid 
phase entropy. 

From the above considerations, it appears obvious that 
Couchman's treatment, rewritten in detail in our previous 
work 2°, has to be modified when the glass transitions of 
the mixtures are lower than T o of component 2. 
Couchman's fundamental equation, based upon the 
equality of the mass-specific liquid and glassy entropies 
at the glass transition temperature of the mixture, is: 

w I Sll (Tg) + w 2sl2 ( Tg) + As~m = w l sgl (Tg) + w 2sg2 ( rg) + As~ 
(7) 

z and sf are the mass-specific liquid and glassy Here s i 
entropies of pure components, w i are the weight fractions, 
and As~m and ASgm are the entropies of mixing of the liquid 
and the glass respectively. 

When the glass transition temperature of the mixture 
is lower than T O of component 2, s~ becomes equal to 
or very close to s~, as explained above and shown in the 
example of Figure 2, and therefore equation (7) can be 
rewritten as: 

wl(s°z+ (r 'Jpl(T)dln T - s ° g -  f f 'c~x(T)dln T)  
~/ Tgl gl 

+ w2(s~2-sg2)+ (Astm-Asgm)=0 (8) 

where s °l and s °g are the entropies at Tgl of the pure 
i and c~1 are the specific heats in component l, and %1 
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Figure 1 Example of the method proposed by Angell 3°'31 to obtain 
the value of the 'ideal glass transition' To. The polymer is 
polyoxytrimethylene. The extrapolation of c~(T) from T~ to To is linear 
on a cp vs. T graph (not shown here). The area of the trapezoid is Asf. 
Points: (0)  c~(T) and c~(T); (A) c~(T) 
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Figure 2 Entropy-temperature diagram of polyoxytrimetbylene. The 
supercooled liquid entropy is extrapolated down to T o. Points: (O) 
s'(r) and se(r); (A) s~(T) 

400 

the liquid and glassy states. Since s o is continuous at T~I, 
the equation becomes: 

fr " +w2(sE-s2)+(Asm--Asm)=O (9) w 1 Acpt(T) din  T ~ o z o 
gl 

By assuming various functional dependences of the 
specific heat increments ACpl on temperature, various 
equations can be derived from equation (9). The zeroth- 
order approximation Acv~ = constant = ACpl (Tg 1) appears 
to be acceptable, if one keeps in mind the fact that, for 
most binary systems, for which Tg-composition data are 
available in the literature, the temperature range from 
Tg 1 to T o, where equation (9) should be applicable, is 
rather narrow (typically of the order of 20--30°C). From 
equation (9), after integration and expansion of the 
logarithm, a relation is obtained that bears a strict 
similarity with the Kovacs equation (5a): 

\ w l / A % :  \ w2 / 

It is interesting to note that by using either the 
approximation A%1 =constant/T, for Tg very close to 
T~I, or the more correct equation A%x = a l  +bxT, one 
again obtains equation (10a) after integration and 
expansion of the logarithm. 

Let us now assume Asgm = As~, as expected for ideal 
and regular solutions 2~. Equation (10a) then becomes: 

T = Tgl +(w2~ T,I 
kWh~ Acp~ (s~- s~) (10b) 

formally similar to the Kovacs equation (5b). 
Since it is invariably expected that s~ >s~, equation 

(10b) correctly predicts that the glass transition tempera- 
ture of the mixture is higher than Tgl. 

In order to obtain a simplified equation, one has to 
evaluate the temperature and therefore concentration 
dependence of the entropy differences in equations (10a) 
and (10b). It has to be noted that (s~-s~) can be taken 
as approximately constant (see Figure 2), since the range 
of temperature between Tgt and T O is generally narrow. 
With this approximation the term: 

( - , (S~ -- S~) "-[- ASm!_ 

W2 / 

also becomes constant if the difference (ASm--ASm)g I is 
linearly dependent on w 2, as expected for any excess 
thermodynamic function in a restricted concentration 
range near component 1 (that is (Asgm- As~) = w2q* where 
q* is an a priori unknown parameter). As a consequence, 
equations (10a) and (10b) can be rewritten in the 
following form: 

Tg=T,I +(wz~ T'I q ( l l)  
\w:/ A%l 

where q is a constant, characteristic of the system, or, if 
Aslm = Asgm, of the polymer alone. 

The similarity between the new equations (10a) and 
(10b) and the Kovacs equations (5a) and (5b) is not 
simply formal. According to Miller 3s'36, the glass 
transition occurs in pure polymers when the product z*sc2 
(where z~ is the minimum number of monomer segments 
in the cooperative unit and s¢2 is the conformational 
entropy referred to 1 g of repeat unit) reaches a critical 
value, given by: 

Zg2Scg 2 .  ---- 11.7r12/M 2 J g- 1 K-  1 

(Here zg*2 and scs 2 are respectively the minimum size of 
cooperative unit and the conformational entropy referred 

4788 POLYMER, 1992, Volume 33, Number 22 



Peculiarities of glass transition of binary systems." M. C. Righetti et al. 

to the glass transition temperature Tg2, n 2 is the number 
of rotatable main-chain bonds in the repeat unit and M 2 
is its molecular weight.) The relationship between so2 and 
the fractional free volume f2 was obtained by Miller 
by combining the Vogel-Tamman-Fulcher equation, 
Adam-Gibbs equation and Doolittle equation 3s. At Tg2 
the following relation was derived: 

Scg2 __ 11.7n 2 fg2 j g-  1 K -  1 (12) 
M2 A0~2 Tg2 

in which Act 2 is, as usual, the free-volume coefficient of 
expansion. 

As Miller pointed o u t  36, the conformational entropy, 
that is the entropy related to the rotation of main-chain 
bonds, is only a fraction of the excess entropy, i.e. of the 
difference between the liquid and the crystal entropies. 
In fact, by using the 'universal' values for f82 and A0~2Tg 2 
(respectively 0.0253v and 0.1133a), one can find that for 
several polymers the conformational entropy at Tg 2, 
calculated according to equation (12), is very close to 
the residual entropy at OK, s2(O), as tabulated by 
Wunderlich 34. At a temperature lower than Tg2, the 
difference (s~-s~2) is generally between the residual 
entropy at 0 K and the excess entropy at Tg 2, which in 
turn is about two or three times the residual entropy (see 
Figure 2 and refs. 39 and 40). As a consequence, the 
difference (sg2-s~2) in equations (10a) and (10b) can be 
approximately replaced by Scg2 as given by equation (12). 
Equation (10b) therefore becomes: 

Tg=Tg,+fO2~fP2~ . .  . 11.7n2 fg2 (13) 
\ ~ l , ] \ p l , ]  Acpl  M2 Aoe2 Tg2 

where (~i a re  the volume fractions and Pi are the densities 
of pure components. Assuming A~iTgi=constant 38, one 
obtains: 

...i_(q~2"~ I fg2 (02"~ 11"7"2 

(14) 

Since (p2/pl)(11.7n2/M2Acpl ) is found to be quite close 
to unity for a score of binary systems examined, the 
glass transition temperature calculated according to 
equation (14) is numerically similar to that obtained from 
equation (Sb). 

COMPARISON WITH EXPERIMENTAL DATA 

In order to compare equation (11) with experimental 
data, it is interesting to examine a few binary systems, 
whose Tg-composition curve is known in the entire 
composition range, and for which the glass transition 
temperature of component 1 is lower than the T O of the 
second component. 

Following Angell's suggestion (equation (6)), the 
temperature T O has been calculated for a few polymers. 
When crystalline specific heat is not available, a good 
approximate relation can be obtained from equation (6) 
taking the difference [alp(T)- c~(T)] as constant and quite 
close to the specific heat increment Acp a t  Tg: 

To = Tf exp( -  Asf/Acp) (15) 

(The term Ast, has been neglected since solid-solid 
transitions are taken to be absent.) 

By using the respective temperatures and enthalpies of 
fusion collected by Wunderlich 34 and the specific heat 

increments from our previous work 2°, the values of To 
have been calculated, according to equation (15), for 
polycarbonate (T0-- 205 K), polystyrene (To-- 280 K), 
poly(2,6-dimethyl-1,4-phenylene oxide) (T o = 391 K) and 
poly(vinyl chloride) (193K). The values obtained for 
polycarbonate (PC), polystyrene (ps) and poly(2,6- 
dimethyl-l,4-phenylene oxide) (PPO) are close to those 
tabulated by Privalko 41 (respectively 220, 261 and 
380 K). As far as poly(vinyl chloride) (PVC) is concerned, 
it has to be pointed out that very different values of the 
enthalpy of fusion are found in the literature 42 and that 
the most probable value should be lower than that given 
by Wunderlich; as a consequence T O should be larger 
than 193 K. 

Taking into consideration the polycarbonate-tricresyl 
phosphate (PC-TTP) system 4a, the Tg-composition 
curve does not show peculiarities indicative of a transition 
from one type of equation to a different one. In fact Tg 1 
is very close to the 'ideal glass transition' of PC and 
perhaps higher. Again, it is understandable that no 
peculiarities are found for the PPO-PS system 44, even 
if, in this case, too few experimental data are available. 

Data on several binary systems containing PVC are 
found in the literature 4-7'12'17't 9. From the form of the 
Tg versus w I curves, it appears likely that, in the 
composition range near the component with lower Tg, 
equation (11) should be applicable, at least when the 
mixture appears to be homogeneous. 

Three binary plasticizer-PVC systems have been 
studied in the proximity of the diluent, and the results 
are reported here. 

The plot of Tg versus w2/w 1, according to equation (11), 
for the system poly(vinyl chloride)-dipropyl phthalate 
(PVC-DPP) 5 (Figure 3) shows a linear dependence 
up to about 210K. From the values of Tg~ and 
Acpl(Tg I = 180K and ACpl(Tga) =0.52 J g -1 K -1 (ref. 5)), 
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Figure 3 Glass transition temperature of PVC-DPP mixture as a 
function of w2/w 1. Data taken from ref. 5. Equation (11) (full line) is 
used to fit experimental data 
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Figure 4 Glass transition temperature of P V C - D P P  mixture as a 
function of w r Data taken from ref. 5. Equation (11) (full curve) i s  
used to fit experimental data in the proximity of component 1 
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Figure 5 Glass transition temperature of PVC-DBP mixture as a 
function of w2/w 1. Data taken from ref. 6. Equation ( l l )  (full line) is 
used to fit experimental data 

one can obtain q=0.07. The bottom part of the 
Tg-composition curve, calculated according to equation 
(11), with this value of q, is shown in Figure 4. 

Figures 5 and 6 refer to the second binary mixture 
examined, poly(vinyl chloride)-dibutyl phthalate (PVC- 
DBP) 6. Also in this case the dependence of T~ on w2/wl 
is linear up to about 210K. For this system T,1 = 178 K, 
Acpl(Tgl)=0.54Jg -~ K -~ (ref. 6) and q=0.08. 

Finally the data of the system poly(vinyl chloride)- 
n-butyl acetate (PVC-BuAc) t9 are plotted in Figures 7 
and 8. (The full circles, compositions at which two glass 
transitions are observed, are not used for the fitting.) 
For this mixture T,1 = 118 K, A%l(Tgl)=O.84Jg -I K -x 
(ref. 19) and q=0.13. 

Since the parameter q is composed of two entropic 
terms, one relative to the polymer alone (sgz-s~) and 

400 

O)  
I,-- 

320" 

240- 

160 
0.0 

A 
A 

A 

A 

A 

P V C - D B P  

A 

A 

A 
A 

I I I I ] I I I I 

0.5 1.0 

Wl 

Figure 6 Glass transition temperature of PVC-DBP mixture as a 
function of wl. Data taken from ref. 6. Equation (11) (full curve) is 
used to fit experimental data in the proximity of component 1 
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Figure 7 Glass transition temperature of PVC-BuAc mixture as a 
function of w2/w 1. Data taken from ref. 19. Equation (11) (full line) is 
used to fit experimental data 
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CONCLUSIONS 

For a binary miscible system, whose pure component 
glass transition temperatures are Tgl and Tg2 (with 
Tg2 > Tgl), the entropic treatment due to Couchman has 
to be modified when Tg of the mixture is lower than the 
'ideal glass transition' T O of component 2. A new equation 
is proposed to describe the composition dependence of 
Tg between To and Tg. It is formally similar, and, within 
reasonable approximations, substantially equivalent to 
an equation proposed by Kovacs based on the free- 
volume model (equation (5)). Equation (11) contains a 
parameter q, given by two entropic terms: the first is 
related to the entropy difference between glass and crystal 
phases of component 2, and the second contains the 
entropies of mixing in the liquid and glassy phases. The 
new equation correctly describes experimental data and 
can give an estimate of the above thermodynamic terms. 
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Figure 8 Glass transition temperature of PVC-BuAc mixture as a 
function of wl. Data taken from ref. 19. Equation (11) (full curve) is 
used to fit experimental data in the proximity of component 1 

the second to a difference of mixing entropies, the 
doubling of q observed in the passage from P V C - D P P  
and P VC -DB P  systems to the PVC-BuAc system 
appears to be indicative of the fact that, probably in all 
these cases, the difference ~ 0 (ASm-ASm) has a non-zero 
value. Unfortunately, such a difference cannot be calcu- 
lated exactly from the experimental values of q, since 
(s~-s~) for PVC has not been determined as a function 
of temperature. Nevertheless, we know that the differ- 
ence (s°z-s~z), at temperatures far from OK, is two or 
three times s2(0). Moreover, according to Wunderlich, 
a relatively constant contribution per 'bead', or mobile 
unit of the backbone chain, to the residual entropy 
at 0 K has been observed for many macromolecules 45. 
The contribution of every 'bead', which seems to be 
size-independent, is about 2.5-4 J tool-  1 K -  1. Taking 
the mean value among those tabulated in ref. 45 
( 3 . 1 J m o l - 1 K - 1 ) ,  one obtains for PVC, whose repeat 
unit has two 'beads', a residual entropy close to 
6 J mol -  1 K - 1, or 0.1 J g-  1 K -  1. If (s~ - s~), in the range 
from T O down to about 100 K, is taken as approximately 
equal to twice the residual entropy, from the experimental 
values of q one can obtain the difference (Asm-Asm)t 0 as 
a function of the composition. At Wl =0.7, for example, 
(Astm-As°m) is about 4 x  1 0 - 2 j g - t K  -1 for the PVC-  
D P P  system, 3 . 5 × 1 0 - 2 j g - l K  -1 for the PVC-DBP 
system and 2 x l 0 - 2 j g - l K - 1  for the PVC-BuAc 
system. It is very interesting to note that the order of 
magnitude of such a difference is equal to that obtained 
in our previous work for the system poly(vinyl chloride)- 
dimethyl phthalate, whose Ts-composition curve, in the 
proximity of the polymer, i.e. for Tg higher than T o, we 
have already studied 2°. Such a mixture is very similar to 
the systems investigated here, in particular to P V C - D P P  
and PVC-DBP systems, concerning the chemical struc- 
ture of the diluent and, as a consequence, the mode of 
interaction between the two components. 
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